If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+36x^2-24x=0
We add all the numbers together, and all the variables
52x^2-24x=0
a = 52; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·52·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*52}=\frac{0}{104} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*52}=\frac{48}{104} =6/13 $
| 3x^2-7x=2x^2-9x+35 | | 2.5+2y=10 | | 13=-3+u/4 | | Y=8x+1.25 | | x=315000(1.02)^20 | | -3(t-2)-(t+5)=1 | | 26.5=-6x+9.5x | | (x+1)/3=(7x-1)/5 | | 3x/8-3/4=1/6 | | 6x+10x=-48 | | 100=-4x-7(-x-19) | | c=48 | | 1/3(3+q)=5 | | (X×2y)+2y=84 | | 4*x=2*x+2=x+3 | | 8(x+2)+(2x-5)=91 | | x^2-80x-900=0 | | x+1/3=7x-1/5 | | 6x+12=2(3+3+3x) | | 4(2x+3)=7x-5 | | -141=-3(8n-1) | | (-1)-(-12)=x | | Hx2/3=10 | | 4x-10=15x-32 | | 6x+3=48-24x | | 4+15y=34 | | x^2+(x+6)^2=38^2 | | x=6.72(2)^5 | | -5+9=2y= | | (2x+0.1)=(3x-0.4) | | 52x^2-24x=0 | | 7v(-4v^2)=0 |